

Heterotaxy Syndrome

Definition/Anatomy

- Abnormal lateralization of the abdominal viscera, thoracic organs and cardiac atria
- Can be classified into two major subtypes
 - Right Atrial Isomerism (RAI)/Asplenia Syndrome
 - Left Atrial Isomerism (LAI)/Polysplenia Syndrome
- Associated with spectrum of congenital heart disease (see below for detailed list of associated cardiac findings)
 - Systemic venous abnormalities
 - Pulmonary venous abnormalities
 - Inlet abnormalities
 - Conotruncal defects

Incidence

• 1/10,000 live births ¹⁻³

Fetal Diagnosis

• 93% prenatal detection rate

Right atrial isomerism/Asplenia Syndrome

- Major cardiac defects in 98%
- Suspect if stomach and cardiac apex on opposite sides (viscerocardiac heterotaxy), single ventricle with AVSD or DORV/mitral atresia, if IVC and aorta are on the same side of spine.

Associated cardiac findings:

- Juxtaposition of aorta and IVC (82%) (major diagnostic feature)
- AVSD (73%)
- RV outflow tract obstruction (67%)
- TAPVR (42%), also small/absent pulmonary veins
- Conotruncal anomalies, especially DORV (40%)
- Absence of coronary sinus
- Interrupted IVC (4%), persistent LSVC (42%)
- Rhythm disturbances rare (1.3%), but can have bilateral sinus nodes or macroreentrant SVT

Associated noncardiac findings:

- Abnormal stomach (55%) and liver position (46%)
- Malrotation of gut (27%)
- Anal atresia
- Chromosomal abnormality (4%)
- Abnormal bronchial and lung lobation (bilateral right lungs)

Left atrial isomerism/Polysplenia Syndrome

- Major cardiac defects in 83%
- Suspect in viscerocardiac heterotaxy, interrupted IVC, Complete AV block (CAVB)

Associated cardiac findings:

- Interrupted IVC with azygos continuation (89%), persistent LSVC (29%)
- AVSD (59%)
- Arrhythmias 37%: most commonly CAVB (27%)
- RV outflow tract obstruction (36%)
- Conotruncal anomalies (especially DORV) (21%)
- Transposition or malrotation of the great arteries (11%)
- Anomalous pulmonary venous return (10%)
- LV outflow tract obstruction (8%)
- Coarctation of the aorta (5%)

Noncardiac associated findings:

- Abnormal stomach (59%) and liver position (33%)
- Polysplenia (57%)⁴
- Abnormal bronchial and lung lobation (bilateral left lungs)
- Malrotation of gut (14%) and GI obstruction (5%)
- Malformations of the biliary tract (8%)⁵
- Hydrops (12%), usually in those with CAVB
- Chromosomal anomalies (3%)

Prenatal Physiology

• Dependent on the cardiac anatomy

Fetal Imaging Checklist [14]:

- Transverse view, Abdomen
 - Location of the abdominal organs (stomach and liver)
 - o Situs determination
- Transverse view, 4-chamber + sweep to outflows
 - Cardiac position, segmental anatomy and connections A/AV/V(looping)/VA.
 - Pulmonary venous connection and drainage
 - o Presence or absence of atrial septum (common atrium)
 - Ventricular size
 - Ventricular septal defect size and location
 - \circ AV valve connections and +/- valve regurgitation
 - o Great artery position, relationship and relative size
 - Outflow tract obstruction
- 3 vessel view
 - Systemic venous connections IVC vs Interrupted, RSVC and/or presence of LSVC
 - Great artery relationship and size
 - Main and branch pulmonary artery and size
 - Direction of flow across the ductus arteriosus (i.e., PA to Ao vs Ao to PA)
- Short axis
 - Ventricular size, position and function,
 - o VSD shunting
 - Overriding/straddling of AV valve tissue.
- Others
 - o Bicaval view
 - Aortic arch anatomy and size
 - Ductal arch Direction of flow across the ductus arteriosus (i.e., PA to Ao vs Ao to PA)
 - Any abnormal venous structure highly suggestive of vertical vein from possible anomalous venous return
 - Rhythm assessment presence of CAVB
 - Pleural/pericardial effusions, ascites, ductus venosus, umbilical artery/vein.

Postnatal Physiology/Management [14]

- Varies with underlying cardiac anatomy
 - o RAI/Asplenia
 - If associated with single ventricle with pulmonary stenosis/atresia,
 - With obstructed TAPVC severe cyanosis
 - PGE1 may not improve oxygenation
 - o May need emergent surgical intervention
 - Normal pulmonary venous connection mild cyanosis
 PGE1 will provide hemodynamic stability
 - Single ventricle and ductal dependent will need surgical palliation after birth
 - If with PS/PA may need modified Blalock-Taussig shunt
 - If without outflow tract obstruction may need PA banding
 - Single ventricle with enough PS to protect vascular bed initial surgical procedure not required.
 - HLHS variants will undergo 3-stage surgical palliation
 - o LAI/Polysplenia
 - If associated with severe RVOTO or LVOTO
 - PGE1 after birth until surgical intervention
 - If associated with less severe CHD may be asymptomatic
 - If associated with large VSD with no PS
 - Pulmonary overcirculation at 6-8 weeks
 - Single ventricle variants
 - PGE1 after birth until surgical palliation
 - Will undergo staged surgical palliation
 - For complex CHD with CAVB
 - Low cardiac output especially if HR < 55 bpm
 - May need inotropic support
 - May need pacing
- Other organ system abnormalities
 - Screening for functional asplenia
 - Antibiotic prophylaxis required and appropriate immunizations given
 - Screening for intestinal malrotation
 - Prophylactic Ladd procedure (controversial)
 - Screening for biliary atresia
 - Associated with polysplenia

Outcomes (*Results will vary at individual centers)

Metaanalysis of 647 Patients ⁴

Perinatal Outcomes

	Right Atrial Isomerism	Left Atrial Isomerism
Termination of pregnancy	33%	25%
Fetal demise	4%	7%
Neonatal death	18%	11%
Late death	15%	6%

Surgical Outcomes

	Right Atrial Isomerism	Left Atrial Isomerism
Need for surgery	70%	73%
Biventricular repair	7%	78%
Univentricular repair	93%	17%
Death during or after surgery	28%	27%

*TAPVR is one of the major determinants of postnatal outcome in RAI, especially when obstructed.

Other literature:

Both LAI and RAI

- 5-year survival 53% for asplenia and 86% for polysplenia
- Single ventricle heterotaxy, 60% survival (median follow up 51mo), prenatal diagnosis did not improve survival¹⁰.
- Risk factors for death: TAPVR, > mild AV valve regurgitation, common AVSD – 10-year survival of heterotaxy was 55% overall and 62% for those who underwent surgery ⁶.
- Bradyarrhythmia is associated with fetal death
- Of 22 pts with heterotaxy and bradycardia/AV block, 1-year survival rate for was 63%.

Right Atrial Isomerism

- 22% survival with a median follow-up of 13.8 years; 67% had some surgical intervention; TAPVR worsens outcomes ⁷.
- 69% mortality with a median 16 year follow-up ⁸.
- 68.7% 12-year survival; need for neonatal palliation was a risk factor and > moderate AV valve regurgitation for late ⁹.

Left Atrial Isomerism

- *Grim* prognosis if associated with CAVB (1/7 survived infancy in Pasquini series, none past 3 months of age in Cohen series and Arunamata) ¹⁰⁻¹².
 - Risk for pacemaker placement: 75% [15]
- 68.7% 12 year survival overall; risk factors = >moderate AV valve regurgitation ⁷.
- *Median* follow up of 18 months, LAI overall survival 90%.
- Results of biventricular repair 12/32 biventricular repair, of which 7/12 had complex intra-atrial baffles and 4/12 needed a pacemaker for CAVB. The remaining 20/32 needed single ventricle palliation ¹³.

References

- 1. Ferencz C LC, Correa-Villasenor A, Wilson PD. *Defects of laterality and looping in Genetic and Environmental Risk Factors of Major Cardiovascular Malformations: The Baltimore-Washington Infant Study 1981–1989.* Armonk, NY: Futura Publishing Company, Inc.; 1997.
- 2. Lin AE TB, Houde K, Westgate M-N, Holmes LB. Heterotaxy: associated conditions and hospital-based prevalence in newborns. *Genetics in Medicine*. 2000;2:157–172.
- 3. Riopel DA. Visceral situs and looping defects. In: Stevenson RE, Hall JG, Goodman RM (eds). Human Malformations and Related Anomalies. New York: Oxford University Press; 1993.
- 4. Uemura H, Ho SY, Devine WA, Anderson RH. Analysis of visceral heterotaxy according to splenic status, appendage morphology, or both. *Am J Cardiol.* 1995;76(11):846-849.
- 5. Ticho BS, Goldstein AM, Van Praagh R. Extracardiac anomalies in the heterotaxy syndromes with focus on anomalies of midline-associated structures. *Am J Cardiol.* 2000;85(6):729-734.
- 6. Foerster SR, Gauvreau K, McElhinney DB, Geva T. Importance of totally anomalous pulmonary venous connection and postoperative pulmonary vein stenosis in outcomes of heterotaxy syndrome. *Pediatr Cardiol.* 2008;29(3):536-544.
- 7. Eronen MP, Aittomaki KA, Kajantie EO, Sairanen HI, Pesonen EJ. The Outcome of Patients With Right Atrial Isomerism is Poor. *Pediatr Cardiol.* 2012.
- 8. Hashmi A, Abu-Sulaiman R, McCrindle BW, Smallhorn JF, Williams WG, Freedom RM. Management and outcomes of right atrial isomerism: a 26-year experience. *J Am Coll Cardiol.* 1998;31(5):1120-1126.
- 9. Ota N, Fujimoto Y, Murata M, et al. Improving outcomes of the surgical management of right atrial isomerism. *Ann Thorac Surg.* 2012;93(3):832-838; discussion 838-839.
- 10. Pasquini L, Tan T, Yen Ho S, Gardiner H. The implications for fetal outcome of an abnormal arrangement of the abdominal vessels. *Cardiol Young.* 2005;15(1):35-42.
- 11. Cohen MS, Schultz AH, Tian ZY, et al. Heterotaxy syndrome with functional single ventricle: does prenatal diagnosis improve survival? *Ann Thorac Surg.* 2006;82(5):1629-1636.
- 12. Arunamata A, Punn R, Cuneo B, Bharati S, Silverman NH. Echocardiographic diagnosis and prognosis of fetal left ventricular noncompaction. *J Am Soc Echocardiogr.* 2012;25(1):112-120.
- 13. Vodiskar J, Clur SA, Hruda J, Bokenkamp R, Hazekamp MG. Left atrial isomerism: biventricular repair. *Eur J Cardiothorac Surg.* 2010;37(6):1259-1263.

- 14 Rychik J, Tian Z. *Fetal Cardiovascular Imaging.* Philadelphia: Elsevier; 2012.
- 15 Escobar-Diaz M, Tworetzky W, et al. Perinatal Outcome in Fetuses with Heterotaxy Syndrome and Atrioventricular Block or Bradycardia <u>Pediatr</u> <u>Cardiol. 2014 Aug; 35(6): 906–913.</u>